Time-polynomial Lieb-Robinson bounds for finite-range spin-network models
نویسندگان
چکیده
منابع مشابه
Lieb-Robinson bounds for spin-boson lattice models and trapped ions.
We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins interacting through a bosonic lattice field, which satisfies a Lieb-Robinson bound in the absence of spin-boson couplings. We apply these bounds to a system of trapped ions and find that the propagation of spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes c...
متن کاملLieb–robinson Bounds for the Toda Lattice
We establish locality estimates, known as Lieb–Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb–Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems.
متن کاملOn Polynomial Lieb-robinson Bounds for the Xy Chain in a Decaying Random Field
We consider the isotropic XY quantum spin chain in a random external field in the z direction, with single site distributions given by i.i.d. random variables times the critical decaying envelope j−1/2. Our motivation is the study of many-body localization. We investigate transport properties in terms of polynomial Lieb-Robinson (PLR) bounds. We prove a zero-velocity PLR bound for large disorde...
متن کاملLieb–Robinson Bounds for Classical Anharmonic Lattice Systems
We prove locality estimates, in the form of Lieb-Robinson bounds, for classical oscillator systems defined on a lattice. Our results hold for the harmonic system and a variety of anharmonic perturbations with long range interactions. The anharmonic estimates are applicable to a special class of observables, the Weyl functions, and the bounds which follow are not only independent of the volume b...
متن کاملOn Anomalous Lieb-robinson Bounds for the Fibonacci Xy Chain
We rigorously prove a new kind of anomalous (or sub-ballistic) Lieb-Robinson bound for the isotropic XY chain with Fibonacci external magnetic field at arbitrary coupling. It is anomalous in that the usual exponential decay in x − vt is replaced by exponential decay in x − vt with 0 < α < 1. In fact, we can characterize the values of α for which such a bound holds as those exceeding αu , the up...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2019
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.100.052309